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Abstract A sliding mode controller with a nonlinear dis-
turbance observer is proposed and developed to control a
farm vehicle to accurately track a specified path. The vehi-
cle is subjected to lateral and longitudinal slips at front and
rear wheels. The unpredictability of ground contact forces
which occur at the wheels while traversing undulating, rough
and sloping terrains require the controllers to be sufficiently
robust to ensure stability. The work presented in this paper
is directed at the practicality of its application with both
matched and unmatched uncertainties considered in the con-
troller design. The controller is designed using an offset
model derived from the kinematic model and its operation
is verified by simulation and field experiments. In the sim-
ulations, the kinematic model based controller is used to
control both a kinematic model and a dynamic model of
a tractor to verify the performance of the kinematic model
based controller. The proposed controller is compared with
two other nonlinear controllers, namely, back stepping con-
trol andmodel predictive control. In the field experiments, the
three controller were used to control the physical tractor to
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follow a specified path. Simulation and experimental results
are presented to show that the proposed controller demon-
strated the required robustness and accuracy at all times.

Keywords Sliding mode control · Path tracking ·
Autonomous ground vehicles · Autonomous farming

1 Introduction

The use of autonomous systems in many industries is rapidly
advancing. In the agricultural industry, the application of
smaller modular autonomous vehicles is promising in deliv-
ering productivity advantages while they are operating with
high accuracy on agricultural terrain. Among these are the
ability to lay the crop highly accurately according to a pre-
specified crop layout plan and to use the knowledge of crop
location to manage the crop right throughout the cropping
season. Similarly, knowing the crop locations also means
knowing where crop has not been planted and hence her-
bicides can be accurately applied to where they are needed
such as the inter-row space. The high accuracy autonomous
path tracking capabilities not only bring in the cost sav-
ings, but also considerable ecological and environmental
advantages. In general, large-scale agricultural activities are
time-consuming, tedious, hazardous and the proposed path
tracking accuracy is unable to be achieved by human opera-
tors. Without a sophisticated crop localization system, high
precision path-tracking is essential for reliable maneuvering
of an autonomous system in the field among the growing
crop to ensure that the crop is not damaged. The aim of this
study is to develop controllers that can deliver such accuracy.
Although the focus of this paper is on farming vehicles, more
specifically tractors, the presented approach is applicable to
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many other industries where high accuracy is required in the
presence of disturbances and uncertainties.

Driver assistance devices and automatic steering systems
are already in operation in the agricultural industry. By def-
inition (Bell 2000), automatic vehicle guidance is ‘accurate
automatic control of the vehicle or implement along a pre-
defined trajectory’. Some realizations of such systems are
presented in Keicher and Seufert (2000) and Reid et al.
(2000). Many advanced approaches for path following con-
trol of wheeled vehicles [as presented in Bloch (2003)
and Thuilot et al. (2001)] are based on the non-holonomic
assumption, which makes the designed controllers vulner-
able to lateral vehicle slip and uncertainties in the field.
Similarly, for agricultural vehicles, the kinematicmodeling in
works related to a vehicle pulling a passive trailer (Rouchon
et al. 1993; Ridley and Corke 2003) and many kinematic
models of tractor-trailer systems (Hodo et al. 2007; Lami-
raux et al. 1999) are based on the no-slip assumption. This
assumption, however, is not valid in agricultural environ-
ment where undulating, sloping and very uncertain terrain
with soft soil degrade the resemblance to pure rollingwithout
slip.

The autonomous operation of a vehicle in a real agri-
cultural environment exposes it to conditions that require
a controller design that takes into account the lateral and
longitudinal slips. The vehicles on agricultural fields are
required to traverse non-smooth and undulating terrainwhere
the ground conditions may change from soft soil to sealed
road. Even the soil conditions may vary from soft sandy
soil to sticky clay. If the designed controllers cannot handle
these rough variable conditions, the autonomous operation
will turn out to be ineffective and unreliable. In this study,
vehicle slips are considered and the controller is designed to
act robustly in the presence of considerable amount of slip
in lateral and longitudinal directions.

The first step in designing a controller for path tracking of
an autonomous vehicle is modeling. As discussed earlier the
models must include vehicle slips. In this work, both kine-
matic and dynamic models are considered for comparative
purposes. In dynamic models, slip forces are used and in the
kinematic models slip velocities are used. Dynamic mod-
els are more comprehensive than kinematic models and are
developed based on known, estimated and/or identified para-
meters. However, complexities in systems and uncertainties
in parameters make the dynamic models somewhat inaccu-
rate.

Dynamic models (Werner et al. 2012; Siew et al. 2009)
are also more exclusive than the kinematic models, which
degrades the generality of the models and the resulting con-
trollers. Moreover, a dynamic model is most useful where
high accelerations and velocities are involved and paths to
be followed have significantly large curvatures. In agricul-
tural scenarios, vehicles traverse at low speeds along straight

paths and it is verified that the kinematic models act very
similar to dynamic models (Werner et al. 2012).

In addition, kinematic modeling of unmanned vehicles
enhanced by partial dynamic modeling and adaptive slip
estimation in Lenain et al. (2012, 2010) demonstrate the
applicability of kinematic models in off-road scenarios oper-
ating at high-speeds while following curved paths. In works
of Werner et al. (2012) and Fang et al. (2011) kinematic
models were developed taking into account the lateral and
longitudinal slips, and in works of Werner et al. (2012) and
Huynh et al. (2010) kinematic models have been developed
for a steerable tractor-trailer system. In this paper, kinematic
models are used for the design of the controllers. However, to
simulate slipmore accurately, a dynamic simulation platform
was developed and the controllers were verified in dynamic
simulation before evaluation in field experiments.

Before proceeding any further, it is important to describe
the differences between the error model and the offset model.
By definition an error model is a model that represents x, y
and θ errors, with respect the the desired values xd , yd and
θd . These models are generally used to develop trajectory
tracking controllers where time plays an important role. The
offset model is defined as the model describing the lateral
position error and the heading error, with respect to those at
the currently closest point on the desired path. These models
are used in the design of path tracking controllers, where time
is not considered. The aim of this work is path following and
as such an offset model derived using a kinematic model,
presented in Huynh et al. (2010) inspired by the work in
Astolfi et al. (2004), has been used to design the controller
(Huynh et al. 2012).

Design of the controllers in the presence of slip is con-
sidered in Thuilot et al. (2001), however, in them, they do
not consider both longitudinal and lateral slips. In contrast,
this work uses an offsetmodel incorporating longitudinal and
lateral slips representing the most general scenario.

In the context of nonlinear control, feedback lineariza-
tion can be a viable method as shown in Bian et al. (2010)
and Shu-qing and Sheng-xiu (2010). This approach has lim-
itations and is not successful when there are uncertainties
in dynamic modeling. Hence, such feedback linearization
approaches lack robustness. Furthermore, they need to fulfill
the zero dynamics stability requirement.

In nonlinear control design, most often Lyapunov stability
criteria are used to prove stability of controllers. Back step-
ping control and sliding mode control (SMC) designs are
based on Lyapunov’s second method of stability analysis.
Both approaches are comprehensively used for the design of
controllers for non-holonomic mobile vehicles. Back step-
ping control technique has been used in Huynh et al. (2012)
and Fang (2004). However, as we show in this paper, the per-
formance of the back stepping controller is more sensitive to
the unmatched disturbances.
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Model predictive control (MPC) is an advanced method
of process control used in many industrial applications such
as refining and petro-chemical industries (Qin and Badgwell
2003). Recently, it has also been used for autonomous guid-
ance of vehicles. For farm vehicles, MPC can successfully
achieve accurate path tracking due to receding optimiza-
tion of both current and future states (Lenain et al. 2005).
However, MPC is mostly for linear systems or linearized
systems and also is not inherently a robust controller (Garcia
et al. 1989). Moreover, precautions are needed in implemen-
tation and tuning of MPC for non-minimal phase systems
(Maciejowski 2002).

The concept of SMC is well known in nonlinear control
design. They are simple and practical, and are widely used
in many industrial applications (Utkin 1977; Yu and Kay-
nak 2009; Yu et al. 2012). Although SMC acts robustly in
the presence of uncertainties and disturbances, the original
SMC is not reliable when unmatched uncertainties exist in
the system. In an agricultural vehicle, unmatched uncertain-
ties and disturbances are inherent. As reviewed in Yang et al.
(2013), LMI-based, adaptive and Riccati approaches on one
hand (Choi 1998; Cheng and Guo 2010), and integral sliding
mode controllers (I-SMC) (Hu 2007) on the other hand, have
been employed to address unmatched uncertainties. How-
ever, the first group is mostly applicable to linear systems. As
for the second approach I-SMC, the integration has adverse
influence on the closed-loop system’s performance causing
phenomena such as large overshoots and long settling times.

In thiswork, the approach presented inHuynh et al. (2010)
is used to derive the offset model for a farm vehicle. Then
a new sliding mode controller incorporating a disturbance
observer is presented. The stability analysis of the designed
controller is then detailed. As dynamic models are also sim-
ulated in this work, the dynamic model of the tractor is
also outlined referring to earlier literature. A raft of simu-
lation results are presented by using the designed controller
to control a kinematic model as well as a dynamic model
and the results are compared with a well performing back
stepping controller presented in the literature and a MPC
controller based on kinematic model without slip inspired
by Wang (2009). Finally the proposed controller is used to
control a real tractor in a field experiment and the results are
presented to verify the path tracking accuracy and robust-
ness. Back stepping controller and MPC approaches are also
implemented in the experiment for comparison purposes.

The content of the paper is laid out as follows. In Sect. 2,
the kinematic and dynamic systems are presented. In Sect. 3,
the proposed control law and stability analysis are presented.
The experimental setup is introduced in Sect. 4. In Sect. 5,
the simulation results that compare the proposed controller’s
path following accuracy to the path following accuracy in
Huynh’s back stepping controller (Huynh et al. 2012) and
MPC controller inspired by Wang (2009) are presented.

Fig. 1 Tractor kinematic model

The DOB-SMC’s robustness and accuracy are verified by
dynamic model simulation and compared with the back
stepping controller and MPC in Sect. 6. In Sect. 6.2, the
experimental results are presented. Conclusions are given in
Sect. 7.

2 System description and modeling

In this section the kinematic and dynamic models used in the
simulations are described.

2.1 Kinematic system description

The kinematic model of the tractor is defined using a bicycle
model with slip velocities incorporated in it. This arrange-
ment is shown in Fig. 1 together with the desired path. The
vehicle body coordinate frame is defined at the mid point of
the rear axle. Note that only the front wheels are steered. The
x-axis of the body coordinate frame coincides with the longi-
tudinal axis of the tractor and points in the forward direction.
The z-axis is pointing upwards and forms a right handed
coordinate system. The offset model mentioned earlier will
be developed with respect to this frame. The global coordi-
nate frame is also shown in the figure. The desired path and
the position and orientation of the body coordinate frame are
represented with respect to the global frame.

The variables and symbols in Fig. 1 are described in
Table 1.
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Table 1 The variables in the kinematic model

Variable Description

A Center of the front axle

B Center of the rear axle

O Origin of global coordinate frame

O ′ Origin of local frame attached to point B

P Point of intersection of the normal from B to
the reference path

cd Curvature of the reference path

xt Easting or the global x coordinate of the
origin of the body fixed frame

yt Northing or the global y coordinate of the
origin of the body fixed frame

θt Heading or orientation of the vehicle in the
global coordinate frame

lt Vehicle wheelbase

V Driving velocity at B in the global coordinate
frame; V = ‖V‖

Vf Front wheel velocity; V f = ‖Vf‖
Vsr Side slip at the rear wheels at B; Vsr = ‖Vsr‖
Vlr The longitudinal slip velocity at the rear at B;

Vlr = ‖Vlr‖
Vsf Front wheel side slip velocity; Vs f = ‖Vsf‖
β f Front slip angle

θd Desired heading based on the desired path
orientation

δ Front wheel steering angle

los Path offset which is defined as the distance
from B to P in Fig. 1

θos Orientation offset; θos = θd − θt

Throughout the paper f (·) and g(·) are nonlinear func-
tions. It is assumed that all states are measurable and known,
which is a valid assumption as the vehicle is equipped with
two GPS units, both of them communicating with a base
station in an RTK-GPS configuration. These GPS systems
provide accurate measurement of the heading angle. Liter-
ature reports that RTK-GPS can provide accurate position
readings (Lenain et al. 2003). In addition, the vehicle is
equipped with an IMU and wheel encoders.

Thiswork does not address the estimation of the slip veloc-
ities although plausible works in this regard have been done,
(Taghia and Katupitiya 2013; Lenain et al. 2010, 2005), with
considerable computational cost and complexity. The per-
formance of the proposed controller was compared with a
MPC. The MPC has been successfully used in Lenain et al.
(2005), however, it has limitations such as negative effects of
accuracy of sensors and ground irregularities in estimation
approaches (Lenain et al. 2006). Furthermore, it has been
shown that there are limitations in the estimation of slip using
recursive approaches (Taghia andKatupitiya 2013). The goal
of this research is the development of a SMC as a robust

controller for a farm vehicle in the presence of lateral and
longitudinal slips at the front and rear wheels of the vehicle.
The controller is designed to drive the offsets, los and θos to
reach zero as time goes to infinity with the help of a nonlin-
ear disturbance observer. In the next section, the kinematic
model is derived using the above introduced parameters.

2.1.1 Kinematic model

Byconsidering xt , yt , θt (easting, northing andheading of the
vehicle) to be the vehicle states, the kinematic model (1) can
be presented as in Lemma 1. The kinematic equations given
in the following lemma are based on Huynh et al. (2010).

Lemma 1 The vehicle kinematic model

ẋt = (V − Vlr ) cos θt − Vsr sin θt ,

ẏt = (V − Vlr ) sin θt + Vsr cos θt ,

θ̇t = V − Vlr
lt

tan(δ + β f ) + Vsr
lt

.

(1)

Note that this model has the slip velocities incorporated.

2.1.2 Offset model

The path offset los and the heading offset θos shown in Fig. 1
were chosen as the state variables to develop the offset model
for the vehicle. The resulting state equations are given in (2).

Lemma 2 Offset model state space description

l̇os = −σ |V − Vlr | sin θos − σζVsr cos θos,

θ̇os = V − Vlr
lt

tan(δ + β f ) + Vsr
lt

−

σ |V − Vlr |cd cos θos

1 + cdlos
+ σζVsr

cd sin θos

1 + cdlos
,

(2)

where σ is considered −1 if the prescribed path curvature
cd is counter-clockwise and it is +1 when the desired path’s
curvature is clockwise. The tractor is always assumed to be
moving in the forward direction and as such, ζ is always 1
and is therefore dropped for brevity. The offset model in (2)
is a single input system. The derivation of this offset model
can be found in Astolfi et al. (2004).

2.2 Dynamic system description

In order to simulate slip and verify the performance of the
controllers in amore realistic simulation, a dynamicmodel of
the vehicle was developed and simulated. For this purpose, a
single-track nonlinear dynamic model (also known as a front
wheel steered bicycle model) with longitudinal and lateral
slips is formed. Dynamic modeling of the vehicle-road sys-
tem allows for more accurate simulation and is formed by
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Fig. 2 Depiction of single-track model

estimating various parameters of the vehicle, the road and
the tires (Baffet et al. 2009). The simplified single-track non-
linear model of the vehicle similar to the one presented in
Siew et al. (2009), is depicted in Fig. 2. The variables and
symbols in Fig. 2 are described in Table 2.

2.2.1 Dynamic model

The Euler equations describing the dynamic model shown
in Fig. 2 are represented mathematically in (3) (Siew et al.
2009). This model can be summarized as the effect of the
front and rear tire forces on the vehicle body itself with
respect to the body’s mass and rotational inertia.

D

⎡
⎣

v̇ − ωΩ

ω̇ + vΩ

Ω̇

⎤
⎦ + G1

[
Fl f
Flr

]
+ G2

[
T f − R f

Tr − Rr

]
= 0 (3)

where R f and Rr are rolling resistances and

D =
⎡
⎣
m 0 0
0 m 0
0 0 J

⎤
⎦, (4)

G1 =
⎡
⎣

sin δ 0
cos δ 1
a cos δ −b

⎤
⎦, (5)

G2 =
⎡
⎣

cos δ 1
−sinδ 0

−a sin δ 0

⎤
⎦. (6)

To solve for the lateral forces on the front and rear tires,
Fl f and Flr , the slip angles β f and βr are used with a lat-
eral tire-force model shown in (7) based on Brach (2009) and
Canudas-deWit et al. (2003). Considering the tire orientation
and its direction of travel, slip angles can be obtained. Trac-
tive forces T f and Tr require slip ratios S f and Sr given in (8)
and the longitudinal tire-force model shown in (9) which is

Table 2 The variables in the dynamic model

Variable Description

m The vehicle mass

Fl f Lateral force at front wheel

Flr Lateral force at rear wheel

R f Rolling resistance at front wheels

Rr Rolling resistance at rear wheels

T f Tractive force at front wheels

Tr Tractive force at rear wheels

Vf Front wheel velocity in the direction of the
front wheel; V f = ‖Vf‖

Vr Rear wheel velocity in in the direction of the
rear wheel; Vr = ‖Vr‖

V Longitudinal velocity at the center of mass;
V = ‖V‖

w Lateral velocity at the center of mass;
w = ‖w‖

� Angular velocity of the vehicle; Ω = ‖�‖
J Rotational inertia

β f Front slip angle

βr Rear slip angle

a Length from center of gravity to the front axle
mid point

b Length from center of gravity to the rear axle
mid point

xt Easting or the global x coordinate of the
origin of the body fixed frame

yt Northing or the global y coordinate of the
origin of the body fixed frame

θt Heading or orientation of the vehicle in the
global coordinate frame

δ Steering angle

Vof Front wheel velocity in the plane of the
vehicle based on wheel velocity

Vor Rear wheel velocity in the plane of the
vehicle based on wheel velocity

also based onBrach (2009) and Canudas-deWit et al. (2003).
R f and Rr are rolling resistances.

F(m, S) =
{

μS/ksa if |S| ≤ ksa
μ sgn(S) if |S| > ksa

(7)

S(Vr , Vor ) =
{

(Vr/Vor ) − 1 if Vr ≤ Vor
1 − (Vor/Vr ) if Vr > Vor

(8)

T (m, S) =
{

μS/ksr if S ≤ ksr
μ sgn(S) if S > ksr

(9)

The purpose of the dynamic simulation is to verify the
successful implementation of the kinematic model based
controller to control a dynamic model. Furthermore, a
dynamic simulation allows us to investigate the effect of slip
on the performance of the kinematic model based controller.
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As such, the dynamic model parameters do not play a role
in tuning of the back stepping controller, the MPC or the
DOB-SMC. Hence a set of parameters (m, J , a and b) that
approximately resemble a physical tractor was used in the
dynamic simulation. Because of this reason the parameters
in Table 2 do not need to be identified accurately.

3 Control methodology

SMCs are well known robust controllers used in practice
to control non-linear systems with uncertainties. In general,
they manage matched uncertainties very well, however, the
management of unmatched uncertainties needs further work.
In this paper, a nonlinear observer is added to the SMC in
order to provide observations that can be used to adapt the
sliding surface in (17) and hence the control law (16). In this
section, DOB-SMC is derived based on (2), and its stability
analysis is provided.

3.1 Control design

A nonlinear observer for estimating unmatched uncertainties
is used in developing the DOB-SMC for this system.

Assumption 1 The velocity V is always greater than Vlr .
Hence −σ |V − Vlr | is equal to −σ(V − Vlr ) and Vlr is
eithermeasurable or can be estimated (Taghia andKatupitiya
2013). Thus

Vl = V − Vlr . (10)

This assumption is valid in most practical scenarios,
although it may be violated in extreme circumstances. The
slip velocity Vlr is calculated based on the encoder read-
outs which give the wheel movement and the GPS and IMU
readouts which give the real vehicle movement. With the
proposed disturbance observer, any inaccuracy in the mea-
surement of Vlr is accommodated within the bounds of the
unmatched and matched uncertainties as in (2).

Assumption 2 We can linearize tan(δ+β f ) so that we have
tan(δ + β f ) = tan δ + tan β f and β∗

f = sup |β f |. By con-
sidering (10)

Vl + tan β∗
f � 0. (11)

This assumption is valid because the angle β f is relatively
small according to practical experience (Huynh et al. 2012;
Fang et al. 2006), and the typical paths for farming activities
mostly consist of straight line segments resulting in smaller
slip. Given that Vl , which is a positive value sufficiently large
when the vehicle is moving and that β f is small compared
to Vl , (11) represents a valid assumption.

Assumption 3 We assume that the side slip velocity is
bounded and is not greater than the real longitudinal speed
of the vehicle, sup |Vsr | = Vl .

This assumption means that the tractor’s forward velocity
is larger than the lateral slip velocity. It means the tractor
will move forward more than slip sideways, hence is a valid
assumption for a tractor in a farm.

Accepting the Assumptions 1, 2 and 3, we define:

x1 = los,

x2 = −σ(V − Vlr ) sin θos = −σVl sin θos,

u = tan δ.

(12)

Based on the new states and input signal defined in (12),
(2) can be rewritten as:

ẋ1 = x2 + d1,

ẋ2 = a(x1, x2) + b(x1, x2)u + d2.
(13)

where the parameters of (13) are as follows.

d1 = −σVsr cos θos,

a(x1, x2) =
σ 2V 2

l

(
1 − x22

σ 2V 2
l

)

1
cd

+ x1
,

b(x1, x2) =
−σVl

(
1 − x22

σ 2V 2
l

) 1
2

lt
,

d21 = σVl
lt

cos θos(tan β f + Vsr ),

d22 = σ 2VlVsr cos θos sin θos
1
cd

+ x1
,

d2 = d21 + d22 .

(14)

By re-arranging (13) in vector form the model is:

ẋ = f (x) + g(x)u + h d, (15)

where x = [x1, x2]T , f(x) = [x2, a(x)]T , g(x) = [0, b(x)]T ,
h = I2×2 and d = [d1, d2]T .

In order to ensure Lyapunov stability of the system
described by (13) in tracking the desired state values, x1 = 0
and x2 = 0, the following control law is proposed:

u = −b−1(x)[a(x)+c(x2+	d̂)+k sgn(s)+α1d
∗
21+α2d

∗
22 ],
(16)

where s is a sliding surface and is defined as,

s = x2 + cx1 + 	d̂, (17)
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where c is the sliding surface gain, by using the Assump-
tions 2 and 3, d∗

21
is defined as:

d∗
21 = σVl cos θos(tan β∗

f + Vl)

lt

= σ sup

∣∣∣∣
Vlcosθos(tan β f + Vsr )

lt

∣∣∣∣ ,
(18)

and similarly, d∗
22

is defined as,

d∗
22 = σ 2V 2

l cos θos sin θos
1
cd

+ x1

= sup

∣∣∣∣∣
σ 2VlVsr cos θos sin θos

1
cd

+ x1

∣∣∣∣∣ .
(19)

The estimated disturbance d̂ in (16) and (17) is calculated
using (20) given below (Yang et al. 2013; Chen 2003).

ṗ = −� h p − �[h � x + f(x) + g(x)u],
d̂ = p + � x,

(20)

where � = [λ1, λ2]T is adjusted to ensure the estimator’s
convergence while p = [p1, p2]T are the internal states of
the observer. They are used to calculate the disturbances d̂ =
[d̂1, d̂2]T . If we define e∗

d1
= d̂1 − d1, the derivative of d̂1

can now be calculated from (20) as follows:

˙̂d1 = −� g(d̂1 − d1)

= −� g(e∗
d1).

(21)

The control law (16) has a signum function that creates
high frequency switching in the control command, which is
well known as chattering (Fridman 2000). In many mechan-
ical systems, actuators can be worn out and damaged if
the control command has high frequency switching compo-
nents. In this case the vehicles steering system is sensitive to
chattering. To minimize chattering, the control law in (16)
is smoothened by the use of a hyperbolic tangent function
instead of signum function as follows:

u = −b−1(x)[a(x) + c(x2 + 	d̂) + k tanh
ks

�

+ α1d
∗
21 + α2d

∗
22 ],

(22)

where � > 0, c > 0 and k are controller’s parameters. 	 is
chosen to be 	 = [1, 0] to limit the use of the estimator to
admit only the unmatched uncertainties. The parameters α1

and α2 are defined as follows to ensure the stability of the
system throughout.

α1 = σ sgn(cos θos),

α2 = sgn

( −x2
σVl

1
cd

+ x1

)
.

(23)

3.2 Stability analysis

Assumption 4 The error ed1 between the estimated value
and actual value of d1 is then = d1 − 	d̂ and is considered
bounded. This bound is denoted by e∗

d1
= sup |ed1 |.

The error between the estimated value and actual value
of d1 is bounded. This assumption relates to the bound on
the error in the estimation of the disturbance. It is valid only
if the disturbance observer is stable and converging. Then,
since d1 = −σVsr cos(θos) is a bounded sinusoidal signal
with bound of Vsr , as per Assumption 3 the bound of Vsr is
Vl .

Theorem 1 For a tractor with a kinematic model given in
(1), the proposed control law (16) brings Lyapunov stability
if the Assumptions 1-4 are satisfied and k is chosen as:

k > (c + �g)e∗
d1 + e∗

d2 , (24)

where e∗
d2

is defined as:

e∗
d2 = d21 + d22 − α1d

∗
21 − α2d

∗
22 . (25)

Note that based on the definitions of d∗
21
and d∗

22
given in (18)

and (19), respectively, and α1, α2 given in (23), e∗
d2

< 0.

Proof : We define the Lyapunov function,

V (s) = s2

2
(26)

the derivative of which is,

V̇ (s) = ṡs. (27)

The derivative of the sliding surface in (17) is,

ṡ = ẋ2 + cẋ1 + ḋ1. (28)

By substituting state equation (13) and the control input u
from (16) in (28), we get:

ṡ = −k sgn(s) + [ ˙̂d1 + c(d1 − d̂1)]
+ [d21 + d22 − α1d

∗
21 − α2d

∗
22 ].

(29)

The parameters, α1 and α2 in (29) are calculated to satisfy
the stability of the controller and the observer. The derivative
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of d̂1 is defined in (21) and e∗
d2

is defined in (25). Hence
by substituting (21) and (25) in (29) the sliding surface’s
derivative is defined as:

ṡ = −� g(e∗
d1) + e∗

d2 − k sgn(s). (30)

By substitution of (30) in (27), V̇ is defined as:

V̇ = −k |s| + [(c + � g)e∗
d1 + e∗

d2 ]s (31)

Therefore, the whole closed loop is Lyapunov stable if:

k > (c + � g)e∗
d1 + e∗

d2 . (32)

��
The condition (32) is more relaxed than the condition pro-

posed in Yang et al. (2013) due to the fact that e∗
d2

< 0 which
reduces the total value of the right hand side of (32) and
therefore stability is guaranteed with smaller k.

As for the tuning of the DOB-SMC, 	 is a vector and its
elements [γ1, γ2] are the gains of the observer designed to
estimate the unmatched and matched uncertainties, respec-
tively. The condition 0 < γ1 ≤ 1 and 0 ≤ γ2 ≤ 1 are
recommended based on practical experience (Yang et al.
2013).

4 Experimental setup

4.1 Hardware and the mechanical system

The DOB-SMC controller was implemented on an autonom-
ous farm vehicle. The base tractor was a John Deere
4210 Compact Utility Tractor shown in Fig. 3. The fully
autonomous system has been developed at the University of
New South Wales, Sydney, Australia. More details about the
hardware, safety system and sensors can be found inMatveev
et al. (2013).

4.2 Software

The software architecture was first introduced in Matveev
et al. (2013), however, newmodules have been added and the
software has been further improved to suit extensive experi-
mentation with various control algorithms. The arrangement
is shown in Fig. 4. Among the additions is aWindow’s appli-
cation to provide easier setup, tuning and monitoring and is
shown in Fig. 5 . Another addition is anAndroid phone appli-
cation that is written as a client to connect to the on-board
control computer via internet, cellular network or wireless
network, and is shown in Fig. 6. The Android app is able
to access the shared memory to read or change the specified

Fig. 3 Autonomous tractor

parameters. Moreover, it is able to provide three plots, two
time based plots and one X–Y plot as the experiment pro-
gressed. The plots can be used as a guide to carry out speedy
tuning of the controller being tested.

5 Control validation: kinematic simulation

First, in simulation, the proposed DOB-SMC controller was
used to control the kinematic model and the performance is
compared with the performance of the back stepping con-
troller presented in Huynh et al. (2012) and MPC as per
(Wang2009)whenused to control the samekinematicmodel.
For designing MPC the offset model in (2) is simplified to a
non-slip model (Wang 2009).

Both cases of without slip andwith slip are simulated. The
slip case takes into account the lateral and longitudinal slips
at front and rear wheels. The slip velocities were considered
constant and to be about 20% of the vehicle speed which is
3 m/s.

The path used for simulations is shown in Fig. 7. This
path consists of straight sections, curved sections and a sharp
corner, which helps us to verify the controllers’ performance
in coping with different types of path segments and segment
to segment transition. Furthermore, aBezier path is generated
to ensure a smooth transition from the initial position and
orientation of the vehicle on to the path. Note that the vehicle
starts at the point denoted as the start point (0,0) of the figure
and follows the entire path in the clockwise direction ending
up at the point denoted as the finish point.

For the back stepping controller and the MPC, the tuning
parameters were used based on the theory of these con-
trol approaches and recommendations in the cited sources
[(Huynh et al. 2012) and MPC (Wang 2009)] with con-
sideration of the experimental platform, and the bounds of
uncertainties for the stability requirements. For DOB-SMC,
SMC is tuned first without disturbance observation, then the
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Fig. 4 Software modules and
user interface

Shared Memory
Set up Module

Path Following Control

Tractor Control

Path Data

GPS/IMU Data

Path Generation

Server

Execution Check

Sensoring & GPS
Inertial Data

Sensor Data

Windows User

Android Mobile App

Remote Module

WiFi

3G/WiFi

Interface

On-board Remote

DOB-SMC

Fig. 5 On-board user interface

observer is added during tuning to improve the performance.
Tuning parameters have been verified to ensure they satisfy
the bounds and stability requirements. The gains used for

the DOB-SMC were; c = 25, k = 5,� = [5, 0]T , ρ =
1, � = 0.01. In the simulation and experiments [1, 0] is
selected to compensate only for the unmatched uncertain-
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Fig. 6 Three screen shots of
the Android app for remote
monitoring and tuning
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Fig. 7 The reference path

ties considering that SMC originally is able to deal with
matched uncertainties. The controller parameters for the back
stepping control law proposed in Huynh et al. (2012) are
c = 0.6, k1 = 0.6, a1 = 0.01, a2 = 1.05, η0 = 1 and
ε = 0.1. Results obtained for both scenarios are presented
and compared in sections below.

5.1 Back stepping controller, MPC and DOB-SMC
without slip

Simulations have been carried out using the back stepping
controller, MPC and DOB-SMC controllers to control the
kinematic system to follow the reference path shown inFig. 7,
in the absence of slip. The comparison of the path offsets
resulting from following the above mentioned reference path
is plotted in Fig. 8. The comparison of the corresponding
heading offsets is plotted in Fig. 9.

5.2 Back stepping controller, MPC and DOB-SMC with
slip

To take into account the effect of slip, the simulation has
been repeated with wheel slip included in the model. Simula-
tions have been carried out using the back stepping controller,
MPC and DOB-SMC to control the kinematic model to fol-
low the reference path shown in Fig. 7. The comparison of
the path offsets is plotted in Fig. 10. The comparison of the
corresponding heading offsets is plotted in Fig. 11.

5.3 Analysis of kinematic model simulation results

Referring to Fig. 8, it can be seen that three controllers per-
form almost identically when there is no slip. However, it can
be seen that there is a slight improvement of accuracy in the
performance of MPC and DOB-SMC. The large errors that
appear between the period form 25 to 30s are due to the sharp
corner in the reference path. Other smaller deviations occur
when the path curvature is non-zero. Since, MPC is designed
originally for a non-slip scenario and based on the prediction
property of this controller, the performance at the curvy seg-
ments of the path is better. As for the case of heading offset
comparison shown in Fig. 9, once again all three controllers
performed equally well along straight path segments.

When slip is included in the kinematic model, the superi-
ority of the DOB-SMC is clearly apparent in the path offset
plot in Fig. 10. Unlike in the non-slip situation, the back
stepping controller and the MPC show vulnerability to slip
effects, even on straight path segments, while the DOB-SMC
has successfully suppressed the effects of the slip for the
majority of the time.

As shown in Fig. 11, as for the heading accuracy, theDOB-
SMC out performs the back stepping controller and MPC.
For these three controller, it can be seen that there exists a
non-zero heading angle when traveling along straight path
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Fig. 8 Simulation of the
kinematic model: path offset
comparison without slip for
back stepping controller, MPC
and DOB-SMC
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Fig. 9 Simulation of the
kinematic model: heading offset
comparison without slip for
back stepping controller, MPC
and DOB-SMC
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Fig. 10 Simulation of the
kinematic model: path offset
comparison with slip for back
stepping controller, MPC and
DOB-SMC

Time (s)
0 5 10 15 20 25 30 35 40 45 50 55

P
at

h 
O

ffs
et

 (
m

m
)

-150

-100

-50

0

50

100

150

200

250

With Slip

Kinemat. Simul. Back Stepping
Kinemat. Simul. MPC
Kinemat. Simul. DOB-SMC

123



www.manaraa.com

82 Auton Robot (2017) 41:71–88

Fig. 11 Simulation of the
kinematic model: heading offset
comparison with slip for back
stepping controller, MPC and
DOB-SMC
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Fig. 12 Illustrationof the referencepath in thefield experiment accord-
ing to Google earth

segments. This non-zero heading angle is unavoidable when
lateral slip is present. This angle is called the crab angle.

Based on the above comparative study, it can be concluded
that the DOB-SMC shows better performance with good sta-
bility in the presence of slip. The back stepping controller
and MPC are compared in a dynamic simulation platform in
a real field experiments.

6 Control validation: dynamic model simulation
and field experiment

The DOB-SMC, the back stepping controller and the MPC
are implemented and validated in a dynamic simulation plat-
form as well as in field experiments. The parameters for
simulation and experiments are tuned to present good per-
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Fig. 13 Simulation of the dynamicmodel: a X–Y plot generated based
on the performance of the controllers in the dynamic simulation. b The
zoomed-in view of the far end of the path
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Fig. 14 Simulation of the
dynamic model: position offset
results from the implementation
of the controllers on the
dynamic model subjected to slip
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Fig. 15 Simulation of the
dynamic model: heading offset
results from the implementation
of the controllers on the
dynamic model subjected to slip
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Fig. 16 Simulation of the
dynamic model: steering
command from the
implementation of the
controllers on the dynamic
model subjected to slip
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formance. For the back stepping controller and the MPC,
the parameters are used based on the theory of this control
approach and recommendations in Huynh et al. (2012) with
consideration of our setup in the evaluation platform. For
DOB-SMC, firstly, SMC is tuned without disturbance obser-
vation, then the observation part was added gradually to have
a good performance. Tuning has been verified for different
paths. Moreover, the bounds of uncertainties are considered
and added to satisfy the stability conditions described in the
paper.

6.1 Dynamic model simulation

To further investigate the DOB-SMC’s performance, a com-
prehensive simulation environment was developed. The
reference path has been changed to a path that is typically
used for farming operations, which is shown in Fig. 12. Then
the back stepping controller and MPC as well as DOB-SMC
that were used to control a dynamic model of a tractor that
closely resembles the actual tractor, will eventually be used
in the field experiment.

The X–Y plot generated by the simulation in the presence
of slip are shown in Fig. 13. The path offsets are plotted in
Fig. 14 and the heading offsets are plotted in Fig. 15. The
steering commands are shown in Fig. 16.

6.2 Field experiment

Using the experimental set up described in Sect. 4, a field
experiment was carried out using the DOB-SMC as the con-
troller implemented in the module labeled “Path Following
Control DOB-SMC” in Fig. 4.

The X–Y plots generated by the experiments are shown
in Fig. 17. The path offsets are shown in Fig. 18, the heading
offsets are shown in Fig. 19 and the steering angles are plotted
in Fig. 20.

6.3 Analysis of results

This section provides a brief analysis of the results obtained
from the simulation of the dynamicmodel and the field exper-
iment. In both cases DOB-SMC was used as the controller
and compared with the back stepping controller and MPC.
While the stability proofs have been provided earlier, from
the plots it can be clearly seen that the DOB-SMC showed
robustness against slip disturbances and parametric uncer-
tainties in the dynamic simulation as well as in the field
experiment. The path offset for the dynamic simulation is
shown in Fig. 14 and for the field experiment in Fig. 18. In
the dynamic simulation, the performance of the back step-
ping controller is very close to DOB-SMC, however, in the
field experiments, DOB-SMC performs better and the rea-
son is the sensitivity of the back stepping controller to the
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Fig. 17 Field experiment: a X–Y plot generated based on the perfor-
mance of the controllers in the field experiment. b The zoomed-in view
of the far end of the path

bounds of the errors. Moreover, as was expected the MPC
did not perform well. The authors believe that the primary
reason for the poor performance is that slip has not been
taken into account in designing the MPC controller and it is
not an easymatter to incorporate slip in the controller design.
MPC performed better than other controllers in the no-slip
simulation as shown in Figs. 8 and 9, however, when slip is
present, MPCs performance degraded as shown in Figs. 10,
14, and 18. The superior performance of DOB-SMC is high-
lighted by the box plot shown in Fig. 22. The box plot is based
on absolute value of the path offset. The red points indicate
the outliers and the red line in the middle is the median,
which is better when it is closer to zero with upper and lower
quartiles shown in blue lines. As for the heading offsets of
different controllers, the results are mostly consistent. How-
ever, as shown in the box plot in Fig. 22, the performance
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Fig. 18 Field experiment:
position offset results from the
implementation of the
controllers on the real tractor

Fig. 19 Field experiment:
heading offset results from the
implementation of the
controllers on the real tractor
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Fig. 20 Field experiment:
steering command from the
implementation of the
controllers on the real tractor
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Fig. 21 Box plot of the path
offsets for the controllers
implemented on the real tractor
in the field experiment
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Fig. 22 Box plot of the heading
offsets for the controllers
implemented on the real tractor
in the field experiment
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Table 3 Position error RMS
and standard deviation (SD)
from the field experiment

Path offset (mm) Back stepping MPC DOB-SMC

Straight segments RMS 100.8174 133.4412 65.9647

SD 57.9616 108.3103 42.3820

Whole path RMS 307.2293 233.7026 125.4823

SD 285.2293 233.3798 118.3216

Table 4 Heading offset RMS
and standard deviation (SD)
from the field experiment

Heading offset (◦) Back stepping MPC DOB-SMC

Straight segments RMS 2.9173 4.8752 2.7213

SD 2.5909 3.0031 2.3897

Whole path RMS 10.9114 9.6513 9.9147

SD 10.9069 9.4696 9.9163

of DOB-SMC is slightly better than the performance of the
other two controllers. The overall result based on DOB-SMC
shows adequate settling time in the control of the farm vehi-
cle and the smaller errors suggest good performance by the
DOB-SMC. Moreover, due to the nature of the farming task,

the farming operations are usually performed with relatively
slower speeds, which makes the kinematic controller suffi-
ciently robust and DOB-SMC is able to stabilize the system
fast enough to maintain the desirable performance and pre-
cision (Fig. 21).
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Apart from the comparisons, in an absolute sense the path
tracking accuracy during the field experiment alone demon-
strated high quality path tracking. The plot shows the position
data generated using theGPS and IMU readings and it is very
clear that the plot has high frequency components. A tractor
which weighs more than a ton cannot follow these high fre-
quency components. As such the actual path tracking has to
be much smoother. In particular, as can be seen in Fig. 18,
while the very high path tracking accuracy is shown along
the straight line segments, the controller has also ensured
very good stability when the curvature of the paths undergo
sudden changes. To quantify the path tracking quality, the
RMS errors of position offsets and heading offsets and their
standard deviations for the straight line segments of the path
and the entire path including curved and sharp turns are given
in Tables 3 and 4, respectively. When traversing straight line
path segments the RMS error for DOB-SMC is only 65.9mm
while the entire path including non-zero curvatures and sharp
corners, shows an RMS value of 125 mm. The heading also
shows very small errors.

7 Conclusion

This work presented a novel and very practical sliding mode
controller backed by a disturbance observer, to control the
steering of a field vehicle to ensure high accuracy path track-
ing. The controller was designed based on the kinematic
model of a full scale tractor and then used to control three
different types of systems. First, it was used to control the
kinematic model, then it was used to control the dynamic
model and finally it was used to control a real tractor in a field.
The performance of the controller was compared against a
back stepping controller and a model predictive controller
from the literature. While all stability proofs are provided,
it was shown that the new controller performed better under
real field conditions, namely when subjected to slip. In an
absolute sense the DOB-SMC performed very well in the
field experiment showing very high accuracy path tracking
along a path that contained circular segments on rough ter-
rains. The accuracy was quantified by presenting statistical
metrics. At all times the controller maintained stable opera-
tion.
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